Поиск по сайту

2.4 Преобразователи напряжения и тока

2.4.1 Умножители напряжения

При разработке высоковольтных схем большое значение на простоту и качество работы устройства оказывает выбранная схема преобразования. Ниже приведено несколько схем умножителей напряжения для применения в самых разнообразных устройствах.

На рис. 2.4-1 представлены схемы удвоителей напряжения. Емкости во всех удвоителях выбирают одинаковыми. Рабочее напряжение конденсаторов должно с запасом перекрывать показанное на схемах. Соответствующим образом необходимо выбирать и диоды. Чем больше ток необходимый в нагрузке, тем большую емкость должны иметь конденсаторы. Естественно, что при повышении напряжения с помощью диодно-емкостных умножителей ток нагрузки пропорционально снижается.

2-4-11.jpg

Аналогичным образом, производится умножение в три и более раза.

Приводимые здесь схемы умножителей могут использоваться в преобразователях напряжение-напряжение. Для примера, приведена схема применения диодного умножителя на 2 (рис. 2.4-5).

Преобразователь (рис. 2.4-5) состоит из генератора, собранного на транзисторах VT1,VT2 и диодно-конденсаторного умножителя. Частота генератора определяется С 1 и резисторами Rl, R2. Выходной сигнал генератора проходит умножающую цепочку и заряжает конденсатор С5. Умножитель рассчитан на выходной ток до 10 мА. Для увеличения тока нагрузки необходимо поставить эмитгерный повторитель после генератора и увеличить емкости конденсаторов С2-С4.

2-4-12.jpg

2-4-13.jpg

2.4.2 Преобразователь "напряжение-ток"

В схеме преобразователя на рис. 2.4-6 коллекторный ток транзистора VT4 определяется выражением: Ikvt4=Uвх/R1. Этот ток вызывает падение напряжения на переходе коллектор-эмиттер транзистора VT1. Так как VT1 и VT2 — одного типа, то напряжение на VT2 будет аналогичным, и, соответственно, протекающий через VT2, VT3 ток будет совпадать с током в VT4. Максимальный выходной ток определяется допустимой мощностью рассеивания транзистора VT3. Для токов выше 5 мА нелинейность преобразования составляет не более 1%. В качестве DA1 можно использовать любой ОУ серий К544. К574, включенный по типовой схеме.

2-4-21.jpg

2.4.3 Преобразователь "ток-напряжение"

Преобразователь на рис. 2.4-7 построен по принципу усиления напряжения, которое возникает при протекании тока через резистор R6. Схема обеспечивает Uвых = К*Iвх- Коэффициент преобразования схемы К = R6*(R3/R4). Для настройки ОУ при Iвх=0 служит резистор R2. Часть входного тока ответвляется в цепь R1, R2, R3. Резистор R6 — проволочный (нихром).

2-4-22.jpg

2.4.4 Пороговый ограничитель тока

Работа ограничителя выходного тока на рис. 2.4-8 основана на шунтировании базовой цепи ключевого транзистора. При входном напряжении, не превышающем пороговое напряжение стабилитрона VD1, транзистор VT1 закрыт, к базе VT2 прилагается полное входное напряжение и выходной ток определяется резисто

ром R3. Как только входное напряжение превысит пороговое напряжение стабилитрона VD1, открывается транзистор VT1, уменьшается напряжение на базе VT2 и уменьшается выходной ток. Крутизну вольт-амперной характеристики ограничителя можно регулировать резисторами R2, R4 (с увеличением R2 крутизна увеличивается, с увеличением R4 крутизна уменьшается).

2-4-23.jpg

2.4.5 Устройство гальванической развязки — аналог переходного трансформатора для слаботочных сигналов

На рис. 2.4-9 приведена схема устройства, которое может заменить переходной трансформатор. Его можно использовать в слаботочных системах управления, импульсных источниках питания в цепи обратной связи и т.п. Коэффициент трансформации схемы зависит от типа применяемой оптопары и ОУ.

2-4-31.jpg

  © riostat.ru

ElectroTOP - Рейтинг сайтов